Abstract
Carbonation in concrete reduces alkalinity and increases the risk of steel reinforcement corrosion in the presence of moisture. Carbonation depth measurement using pH indicator is a widely used and standardised approach for assessing the carbonation-affected region in concrete for concrete durability evaluation. This study compares the carbonation depth obtained using phenolphthalein and thymolphthalein indicators in cement mortars and concretes subjected to natural and accelerated carbonation in a widely used and standardised approach of assessing the carbonation-affected range in cement combinations with varying clinker contents. Results demonstrate that the use of 1% thymolphthalein indicator provides similar carbonation depth to 1% phenolphthalein solution, confirming its usage for carbonation depth measurement in laboratory evaluation and for condition assessment in the field structures subjected to ambient carbonation.
References
[1] L.J. Parrott, D.C. Killoh, Carbonation in a 36 year old, in-situ concrete, Cem Concr Res 19 (1989) 649–656. https://doi.org/10.1016/0008-8846(89)90017-3.
[2] D.J. Anstice, C.L. Page, M.M. Page, The pore solution phase of carbonated cement pastes, Cem Concr Res 35 (2005) 377–383. https://doi.org/10.1016/j.cemconres.2004.06.041.
[3] G.W. Groves, D.I. Rodway, I.G. Richardson, The carbonation of hardened cement pastes, Advances in Cement Research 3 (1990) 117–125. https://doi.org/10.1680/adcr.1990.3.11.117.
[4] Z. Yue, Y. Dhandapani, S.A. Bernal, Structural alterations in alkali-sulfate-activated slag cement pastes induced by natural and accelerated carbonation, Cem Concr Res 187 (2025) 107713. https://doi.org/10.1016/j.cemconres.2024.107713.
[5] T.C. Powers, A Hypothesis on Carbonation shrinkage, Journal of PCA Research and Development Laboratories (1962) 40–50. https://doi.org/https://trid.trb.org/View/102092.
[6] H. Ye, A. Radlińska, J. Neves, Drying and carbonation shrinkage of cement paste con-taining alkalis, Materials and Structures/Materiaux et Constructions 50 (2017). https://doi.org/10.1617/s11527-017-1006-x.
[7] K. Kamimura, P.J. Sereda, E.G. Swenson, Changes in weight and dimensions in the drying and carbonation of Portland cement mortars, Magazine of Concrete Research 17 (1965) 5–14. https://doi.org/10.1680/macr.1965.17.50.5.
[8] M. Sabitwu, Y. Dhandapani, M. Drewniok, S. Adu-Amankwah, S.A., Bernal, Carbona-tion induced changes in the mechanical performance, water and chloride permeability of Portland cement-slag-limestone composite concretes, Cem Concr Compos 163 (2025) 106222. https://doi.org/10.1016/j.cemconcomp.2025.106222.
[9] A.B., Revert, K. De Weerdt, K. Hornbostel, M.R. Geiker, Carbonation-induced corro-sion: Investigation of the corrosion onset, Constr Build Mater 162 (2018) 847–856. https://doi.org/10.1016/j.conbuildmat.2017.12.066.
[10] U. Angst, F. Moro, M. Geiker, S. Kessler, H. Beushausen, C. Andrade, J. Lahdensivu, A. Köliö, K.I. Imamoto, S. von Greve-Dierfeld, M. Serdar, Corrosion of steel in car-bonated concrete: Mechanisms, practical experience, and research priorities – A critical review by RILEM TC 281-CCC, RILEM Technical Letters 5 (2020) 85–100. https://doi.org/10.21809/rilemtechlett.2020.127.
[11] CPC-18 Measurement of hardened concrete carbonation depth, Mater Struct 21 (1988) 453–455. https://doi.org/10.1007/BF02472327.
[12] S.A. Bernal, Y. Dhandapani, Y. Elakneswaran, G.J.G. Gluth, E. Gruyaert, M.C.G. Juenger, B. Lothenbach, K.A. Olonade, M. Sakoparnig, Z. Shi, C. Thiel, P. Van den Heede, H. Vanoutrive, S. von Greve-Dierfeld, N. De Belie, J.L. Provis, Report of RILEM TC 281-CCC: A critical review of the standardised testing methods to determine carbonation resistance of concrete, Mater Struct 57 (2024) 173. https://doi.org/10.1617/s11527-024-02424-9.
[13] V.G. Papadakis, C.G. Vayenas, M.N. Fardis, Experimental investigation and mathemati-cal modeling of the concrete carbonation problem, Chem Eng Sci 46 (1991) 1333–1338. https://doi.org/10.1016/0009-2509(91)85060-B.
[14] S. Rathnarajan, B.S. Dhanya, R.G. Pillai, R. Gettu, M. Santhanam, Carbonation model for concretes with fly ash, slag, and limestone calcined clay - using accelerated and five-year natural exposure data, Cem Concr Compos 126 (2022) 104329. https://doi.org/10.1016/j.cemconcomp.2021.104329.
[15] fib Model Code for Concrete Structures (2020), 2023.
[16] S. Rathnarajan, R.G. Pillai, Carbonation models using mix-design parameters for con-cretes with supplementary cementitious materials, Journal of Building Engineering 104 (2025) 112392. https://doi.org/10.1016/j.jobe.2025.112392.
[17] G. Verbeck, Carbonation of Hydrated Portland Cement, in: Cement and Concrete, ASTM International100 Barr Harbor Drive, PO Box C700, West Conshohocken, PA 19428-2959, 1958: pp. 17–36. https://doi.org/10.1520/STP39460S.
[18] S. Von Greve-Dierfeld, B. Lothenbach, A. Vollpracht, B. Wu, B. Huet, C. Andrade, C. Medina, C. Thiel, E. Gruyaert, H. Vanoutrive, I.F. Saéz del Bosque, I. Ignjatovic, J. El-sen, J.L. Provis, K. Scrivener, K.-C.C. Thienel, K. Sideris, M. Zajac, N. Alderete, Ö. Cizer, P. Van den Heede, R.D. Hooton, S. Kamali-Bernard, S.A. Bernal, Z. Zhao, Z. Shi, N. De Belie, Understanding the carbonation of concrete with supplementary ce-mentitious materials: a critical review by RILEM TC 281-CCC, Mater Struct 53 (2020) 136. https://doi.org/10.1617/s11527-020-01558-w.
[19] Z. Yue, Y. Dhandapani, J.L. Provis, S.A. Bernal, A reactive-transport framework to model carbonation performance of a hardened cement: the case of alkali-sulfate slag ce-ment pastes, Cem Concr Res 197 (2025) 107961. https://doi.org/10.1016/j.cemconres.2025.107961.
[20] Y.F. Houst, The role of moisture in the carbonation of cementitious materials, Internatio-nale Zeitschrift Für Bauinstandsetzen 2 (1996) 49–66. http://infoscience.epfl.ch/record/29446/files/I_J_Rest_Buildg_96.pdf.
[21] H. Bao, G. Xu, Q. Wang, Y. Yang, Y. Su, Investigation on the Distribution Characteris-tics of Partial Carbonation Zone of Concrete, Journal of Materials in Civil Engineering 33 (2021). https://doi.org/10.1061/(asce)mt.1943-5533.0003548.
[22] BS EN 196-1, BS EN 196-1: Methods of testing cement. Determination of strength, (2016).
[23] Y. Dhandapani, S. Bhadauria, S. Krishnan, M.C.G. Juenger, S.A. Bernal, Effect of the Carbonate Source on the Carbonation Performance of Blended Binders Containing Cal-cined Clays, in: A., Jędrzejewska, F., Kanavaris, M., Azenha, Benboudjema, S.D. F. (Eds.), International RILEM Conference on Synergising Expertise towards Sustainabil-ity and Robustness of Cement-Based Materials and Concrete Structures. SynerCrete 2023., Springer, Milos, 2023: pp. 1173–1182. https://doi.org/10.1007/978-3-031-33187-9_109.
[24] Y. Dhandapani, K.K. Subramanian, F. Kanavaris, L. Black, S.A. Bernal, The meta-kaolinite content of the calcined clay source impacts the mechanical and durability per-formance of blended Portland concrete, Cem Concr Res 196 (2025) 107922. https://doi.org/10.1016/j.cemconres.2025.107922.
[25] N. Vogler, M. Lindemann, P. Drabetzki, H.-C. Kühne, Alternative pH-indicators for de-termination of carbonation depth on cement-based concretes, Cem Concr Compos 109 (2020) 103565. https://doi.org/10.1016/j.cemconcomp.2020.103565.
[26] BS EN 12390-12:2020, Testing hardened concrete – Part 12: Determination of the car-bonation resistance of concrete – Accelerated carbonation method, (2020).
